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STABILITY AND TRANSITION ON A SWEPT CYLINDER

IN A SUPERSONIC FLOW

UDC 532.526A. I. Semisynov,1 A. V. Fedorov,2 V. E. Novikov,1

N. V. Semionov,1 and A. D. Kosinov1

Results of experimental investigations of the evolution of natural disturbances and laminar–turbulent
transition in a supersonic boundary layer on the attachment line of a circular cylinder with a sweep
angle of 68◦ and a free-stream Mach number M = 2 are presented. The experimental studies are
supplemented by calculations of the mean flow and stability characteristics. Flow regimes in the
boundary layer on the attachment line are determined by a hot-wire technique as functions of the
Reynolds number and height of two-dimensional roughness elements. The results are compared with
NASA (Ames) experiments.
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It is known that the laminar–turbulent transition in a boundary layer on a swept wing is largely determined
by the surface quality and boundary-layer flow character in the vicinity of the leading edge. The data obtained in
studying the possibility of controlling the laminar flow [1–5] show that it is next to impossible to laminarize the flow
on a swept wing if the boundary layer on the attachment line becomes turbulent. The wave processes that occur
on the leading-edge attachment line and are responsible for transition to turbulence have not yet been adequately
studied, which complicates solving the problem of boundary-layer laminarization on swept wings.

The transition on the attachment line has been mainly studied experimentally. In these studies, the critical
values of the transition Reynolds number were determined. The experiments on swept cylinders for low flow
velocities are reviewed in [6]. The investigations [6–8] of the boundary-layer transition on the attachment line with
trip wires of different diameters revealed the complex behavior of disturbances. The following specific features were
identified.

In the case of a “pure” flow (low levels of external disturbances and small roughness of the wetted surface),
the initial phase of the transition process is characterized by amplification of unstable wave packets and can be
studied using the linear theory of stability. A simplified analysis [7] based on the linear theory for a parallel
incompressible flow predicts the critical Reynolds number based on the momentum thickness Reθ,cr ≈ 270. Hall
et al. [9] examined the stability of the swept Hiemenz flow and considered a particular family of two-dimensional
solutions [called the HMP (Holl–Malik–Poll) mode below] related to plane waves propagating along the attachment
line. The calculations showed that the critical Reynolds number was Reθ,cr ≈ 235, which is in good agreement with
the experiments of [7, 10]. Lin and Malik [11] developed an approach for determining three-dimensional boundary-
layer stability on the attachment line on the basis of linearized stability equations for an incompressible flow. The
use of this method in analyzing the Hiemenz flow stability revealed families of unstable three-dimensional modes
(symmetric and antisymmetric) in addition to the HMP mode. Numerical results showed that the HMP mode is
the first symmetric mode with the highest growth rate. Kazakov [12, 13] considered the HMP mode stability for
a compressible swept Hiemenz flow. The possibility of controlling this type of instability with the help of heat
addition to the boundary layer was considered in [14].
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Fig. 1. Attachment line on a swept wing: surface streamlines (1) and swept wing surface (2).

Apparently, the boundary layer transition under intense external disturbances or in the case of a rough
surface occurs via the nonlinear stage only. Theoretical investigations of this regime include the nonlinear stability
analysis [15] and direct numerical simulation [16, 17].

Figure 1 shows schematically the flow around a swept wing (cylinder), coordinate system, and velocity
components. The leading edge of the wing is called subsonic if the Mach number normal to the edge is Mn < 1 and
supersonic if Mn > 1. To find the specific features of the laminar–turbulent transition on the leading edge of the
swept wing, we considered the evolution of natural disturbances on the attachment line of a circular cylinder with
a sweep angle of 68◦ with a Mach number M = 2, which corresponds to a subsonic leading edge. In addition, the
mean flow in the boundary layer and the characteristics of its stability were calculated.

Statement of Experiments. The experiments were performed in a T-325 low-turbulent supersonic wind
tunnel of the Institute of Theoretical and Applied Mechanics of the Siberian Division of the Russian Academy of
Sciences. The main characteristics of the wind tunnel are described in [18, 19].

The models were circular cylinders made of steel, 38.4 mm in diameter and 145 or 530 mm long. One of
the cylinders was mounted in the wind-tunnel test section at an angle of 68◦ to the incoming stream. The short
cylinder was fixed on a traversing gear providing upstream and downstream displacements within 0.1 mm, and the
long cylinder was rigidly attached to the side wall of the test section of the T-325 wind tunnel. The roughness was
obtained using wires 0.075 and 0.115 mm in diameter for the first model and 0.2, 0.3, 0.44, 0.54, 0.83, and 1.12 mm
for the second model. The wire was glued over the cylinder circumference at a distance of 45 and 220 mm from the
apex for the short and long cylinders, respectively.

An automated data acquisition system similar to that described in [20] was used in the experiments. The
mean and fluctuating characteristics of the flow were measured by a constant-temperature anemometer with a 1 : 10
ratio of arms and a frequency range up to 400 kHz [20] and by tungsten-wire probes 5 µm in diameter and 1 mm long.
The wire overheating was 0.8, and the measured disturbances corresponded to mass-flow fluctuations [20, 21]. The
fluctuating voltage from the hot-wire anemometer was fed to a computer by a 12-digit analog-to-digital converter
(ADC) with a frequency of 750 kHz. Digital oscillograms contained 16,384 points. The mean voltage from the
hot-wire anemometer was recorded into the computer through input registers connected to a ShCh1516 voltmeter.
The probe was fixed on the traversing gear and moved at an angle of 68◦ to the Y axis with accuracy of 0.01 mm.
The initial value of this coordinate (probe position relative to the model) was determined by electric contact of the
probe and the cylinder surface.

Theoretical Analysis. Since the characteristic Reynolds number based on the boundary-layer thickness
and flow parameters at the boundary-layer edge is rather high, the asymptotic method of multiple scales can be used
to analyze flow stability at the attachment line [22, 23]. This method is based on the fact that the boundary-layer
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Fig. 2. Mean-flow profiles on the attachment line: curves 1–3 show the
calculated data for T (1), U (2), and W (3); points 4 and 5 refer to the
experimental data for W (4) and T (5).

thickness δ is much smaller than the characteristic longitudinal scale L. In the case of the flow on the attachment
line, L is the leading-edge radius, and the small parameter can be defined as ε = 1/Re, where Re = η∗W ∗e /ν

∗
e is

the Reynolds number and η∗ =
√
ν∗e/(∂U∗e /∂X)|X=0 is the scale of the boundary-layer thickness. The flow on the

attachment line in the Z direction is parallel (Fig. 1). Still, it is not parallel in the chord direction X because of the
boundary-layer growth and curved surfaces and streamlines. The effect of nonparallelism is considered as a small
(of the order of 1/Re) perturbation of the mean flow.

Mean Flow. Boundary-layer characteristics are assumed to be constant in the Z direction. For low values
of η∗/L, the cylinder-surface curvature can be neglected. Then, the coordinate system (X,Y, Z) in the vicinity of
the attachment line is locally Cartesian. The velocity components, temperature, and pressure are presented as

(u, v, w)(x, y, z) = (εxU(y), εV (y),W (y)), T = T0(y), P = (γM2
e)
−1 − ε2x2/2,

where the quantity η∗ is used to normalize the coordinates x, y, z, the velocity is normalized to W ∗e , and the
temperature and pressure are normalized to T ∗e and ρ∗eW

∗2
e , respectively; γ = 1.4 is the ratio of specific heats and

Me = We/ae is the local Mach number. For a thermoinsulated surface, the profiles U(y), V (y), W (y), and T (y) are
solutions of the following system of ordinary differential equations [1, 2]:

(U2 + V U ′)/T0 = 1 + µ′T ′U ′ + µU ′′, V W ′/T = µ′T ′W ′ + µW ′′,

U − V T ′/T + V ′ = 0, µ′T ′2/Pr + µT ′′/Pr − T ′V/T + M2
e(γ − 1)µW ′2 = 0,

U(0) = W (0) = V (0) = 0, T ′(0) = 0, y = 0, U(∞) = W (∞) = T (∞) = 1.

Here Pr = 0.72 is the Prandtl number and µ = µ∗/µ∗e is the dimensionless viscosity calculated by the Sutherland
formula.

Flow characteristics at the boundary-layer edge were calculated by the Euler equations for the following test
conditions: a cylinder 38.4 mm in diameter with a sweep angle Λ = 68◦ is exposed to the flow, the free-stream
Mach number is M∞ = 2, and the stagnation temperature is T0 = 310 K. Calculations with ignored viscosity yields
the local Mach number Me = 1.76 and temperature Te = 191.6 K.

The boundary-layer equations were integrated with a unit Reynolds number Re∞,1 = 6.75 · 106 m−1, which
corresponds to a Reynolds number Re = 537 and boundary-layer thickness scale η∗ = 7.23 ·10−5 m. The theoretical
profiles of the mean flow are shown in Fig. 2. The arrow indicates the boundary-layer thickness δ ≈ 0.25 mm
determined from the experimental mean-velocity profile plotted in Fig. 2. This value is in agreement with the
calculated one.

Stability Characteristics. The instantaneous flow field is represented as Q(x, y, z, t) = Q0(x, y) + q(x, y, z, t),
where the quantity Q0 = (εxU, εV,W,P, T ) characterizes the mean flow and q = (u, v, w, p, θ) are velocity, pressure,
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and temperature disturbances. Defining the slow variables by the relations x1 = εx, z1 = εz, and t1 = εt, we consider
oblique waves with given wavenumbers α and β on the attachment line x1 = 0. In this case, the disturbance vector
we write as

F =
(
u,
∂u

∂y
, v, p, θ,

∂θ

∂y
, w,

∂w

∂y

)t

,
(1)

F (x, y, z, t) = [Z0(t1, y) + εZ1(t1, y) + . . . ] exp (iαx+ iβz − iωt),

where α and β are real wavenumbers and ω = ω(α, β) is a complex eigenvalue. The temporal growth is determined
by the increment ωi = Imω. Substituting (1) into the linearized Navier–Stokes equations, we obtain the following
boundary-value problem in the main approximation in terms of ε:

∂Z0

∂y
= HZ0,

(2)

Z01 = Z03 = Z05 = Z07 = 0, y = 0, Z01, Z03, Z05, Z07 → 0, y →∞.

The matrix H depends on the mean-flow profiles of x1U , W , and T , Reynolds number Re, and wave
characteristics α, β, and ω; it explicit form for a three-dimensional compressible boundary layer can be found in
[22, 23]. The solution of problem (2) is represented in the form Z0 = C(t1)ζ(x1, y;α, β, ω), where ζ is the eigen
vector-function. In the next approximation in ε, we obtain the inhomogeneous problem

∂Z1

∂y
= HZ1 +Gt

∂Z0

∂t1
+Gx

∂Z0

∂x1
+GZ0,

(3)
Z11 = Z13 = Z15 = Z17 = 0, y = 0, Z11, Z13, Z15, Z17 → 0, y →∞,

where Gx = −i∂H/∂α and Gt = i∂H/∂ω. The matrix G depending on the profiles of U and V and the flow
variable x1 describes the effect of mean-flow nonparallelism in the X direction. Problem (3) has nontrivial solutions
if its right side is orthogonal to the eigenvector ξ of the problem conjugate to (2). This condition yields the equation
for the amplitude coefficient

dC

dt1
= hωC, hω = − 1

〈Gtζ, ξ〉

(〈
Gx

∂ζ

∂x1
, ξ
〉

+ 〈Gζ, ξ〉
)
, 〈f, g〉 ≡

∞∫
0

(f, g) dy, (4)

which has a solution C = C0 exp (εhωt). The exponent εhω can be treated as a correction to the eigenvalue
of ω(α, β). Then, the complex frequency of the disturbance is determined as Ω = ω + iεhω.

Numerical calculations for two-dimensional waves (α = 0) with low Mach numbers showed that the eigenval-
ues and eigenfunctions calculated by the asymptotic method with allowance for flow nonparallelism almost coincide
with the corresponding results of [11]. In addition, the analysis of [9] was extended to the case of compressible
flows. The exact solution for the HMP mode was compared to the asymptotic solution for supersonic flow velocities.
Figure 3 shows an example of such a comparison for a Mach number Me = 1.55 and Reynolds number Re = 1000.
As in the case of low velocity of the flow, the asymptotic solution is in good agreement with the exact HMP solution.

Parametric calculations for three-dimensional disturbances showed that two-dimensional waves with α = 0
are most unstable at low Mach numbers. For supersonic regimes Me > 1, the maximum increments correspond to
three-dimensional traveling waves. The calculation results for a local Mach number Me = 1.76 and temperature
Te = 191.6 K corresponding to test conditions are plotted in Fig. 4. For Re < 520, the boundary layer on the
leading edge is stable. For Re > 520, the phase velocity of the most unstable waves is c = ωr/β ≈ 0.5; the angles
of inclination of the wave vector ψ = arctan (α/β) vary from 43◦ for Re = 520 to 51◦ for Re = 1000.

In a similar manner, we consider monochromatic waves with a fixed frequency ω and wavenumber α. The
solution of problem (2) is represented as Z0 = C(z1)ζ(x1, y;α, β, ω), where β = β(α, ω) is a complex eigenvalue.
Equation (4) acquires the form

∂Z1

∂y
= HZ1 +Gz

∂Z0

∂z1
+Gx

∂Z0

∂x1
+GZ0,

where Gz = −i∂H/∂β. The amplitude function is the solution of the equation

dC

dz1
= hβC, hβ = − 1

〈Gzζ, ξ〉

(〈
Gx

∂ζ

∂x1
, ξ
〉

+ 〈Gζ, ξ〉
)
.
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Fig. 3. Eigenvalues of the HMP mode for Me = 1.55, Re = 1000, and α = 0: curves 1 and 2 refer to ωi and
ωr, respectively; the curves show the exact solution and the points show the asymptotic solution.

Fig. 4. Maximum temporal increments ωi for Re = 550 (1), 600 (2), 700 (3), 800 (4), 900 (5), and 1000 (6).

The growth rate of the wave in the Z direction is determined by the spatial increment σ = − Imβ+Re (εhβ).
The value of the transverse coordinate Ztr, where the transition caused by the source of disturbances at a certain
point Z0 occurs, is evaluated by the eN method in which the transition point is found from the equation

N =

Ztr∫
Z0

σ dz = σ(Ztr − Z0).

Here the integral growth rate N is an empirical parameter, which takes the value N = 10 for small external
perturbations. The distance to the transition point is estimated as s = Ztr − Z0 = 10/σ. For Re < 520, the flow
on the leading edge is stable, i.e., s = ∞. With increasing Re, the increments increase and the distance s rapidly
decreases. For instance, for Re = 1000 and a unit Reynolds number Re∞,1 = 23.4 · 106 m−1, the amplification by a
factor of e10 occurs at a distance of about 220 mm for the cylinders used in the experiment.

Measurement of the Shear Layer Thickness. In studying the evolution of natural disturbances and
measuring the mean characteristics of the boundary layer on the attachment line of the circular cylinder, we used
the following free-stream parameters: Mach number M = 2, unit Reynolds number Re1 = 6.8 · 106 m−1, stagnation
temperature T = 280 K, and free-stream velocity U∞ = 508 m/sec.

The boundary-layer thickness was measured by a hot-wire anemometer with probe distances from the leading
edge (apex) of the model Z = 36, 47, 58, and 85 mm. Based on the measurement results, we obtained profiles of the
mean voltage E(Y )/E∞ and frequency-integral root-mean-square fluctuations of the mass flow rate 〈ρu〉 as functions
of the Y coordinate. The boundary-layer thickness δ was determined from the mean-voltage profile. The moment
of drastic decrease in voltage corresponds to the upper boundary of the shear layer. For different values of Z, the
boundary-layer thickness was constant: δ = (0.25±0.02) mm. The constancy of the boundary-layer thickness along
the attachment line is in good agreement with the theory of [24]. The profiles of W and T (see Fig. 2) were obtained
by data processing with the use of calibration dependences for the probe and known relations for flow parameters
in a supersonic boundary layer [24]. Note, the profiles were measured beginning from the coordinate Y = 0.05 mm;
nevertheless, for Y < 0.15 mm, the Reynolds number based on the wire diameter was Red < 20. According to [21],
for instance, the calculation of the mean flow parameters on the basis of experimental points becomes incorrect
for Red < 20 or M < 1.3 (these values are typical for hot-wire measurements in a supersonic flow). The first
constriction can be weakened by increasing the unit Reynolds number, but the boundary-layer thickness decreases
thereby; for Y < 0.1 mm, the hot-wire readings are affected by the wall, which leads to deviation of the profiles
from the theoretical ones.
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Fig. 5. Root-mean-square fluctuations of the mass flow rate in the shear layer
for Z = 85 mm and Re1 = 6.8 ·106 m−1: points 1 and 2 show the experimental
results obtained under identical conditions at different times.

Evolution of Disturbances in the Boundary Layer on the Attachment Line. According to flow-
stability calculations, the Reynolds number obtained Re = 537 is only slightly higher than the critical value
Re ≈ 520, i.e., an insignificant increase in disturbances within the frequency range of 75–80 kHz can be observed in
such experiments.

For Y ≈ 0.15 mm, the distribution of root-mean-square fluctuations has a maximum (Fig. 5), which is
typical of natural disturbances in the boundary layer. The amplitude of natural disturbances in the maximum of
fluctuations increases with increasing coordinate Z. Based on the measured oscillograms, we obtained fluctuation
spectra, which showed that disturbances in the frequency range from 1 to 30 kHz increase most intensely (almost
fivefold). This fact can be explained by amplification of acoustic oscillations of the incoming flow by the supersonic
boundary layer [25], though such calculations have not been performed yet.

To determine the flow character on the attachment line, the hot-wire probe was located at a distance
Z = 133 mm. The unit Reynolds number was varied from 5 · 106 to 32 · 106 m−1, which corresponded to the
boundary-layer thickness of 0.26–0.10 mm. Since the measurement inside the boundary layer of small thickness
are problematic, the flow character was determined by oscillograms of disturbances on the boundary-layer edge.
It was assumed that the transition is accompanied by appearance of spikes on oscillograms, which is typical of
the nonlinear stage of disturbance evolution. Since such a reconstruction of fluctuations was not observed, the
boundary-layer flow, apparently, was laminar within the mentioned range of unit Reynolds numbers. The estimates
of the transition position obtained by the eN method also allow us to conclude that the flow character was laminar
under given test conditions. The same measurements were performed on the long cylinder, using a Pitot probe
mounted on the attachment line at a distance of 350 mm from the apex. The outer and inner sizes of the steel
probe were 0.22× 1.25 and 0.1× 1.0 mm, respectively. It was found that the transition occurred at a unit Reynolds
number Re1 = 27 · 106 m−1 (or Re = 1070). This value is rather close to the theoretical estimate given above.

Origin of a Turbulent Flow behind a Roughness Element. An earlier transition on the models usually
occurs due to the presence of roughness elements (boundary-layer trips). According to [6–8], the dependence of the
transition Reynolds number of the boundary layer on the attachment line on the roughness height k contains three
typical regions. For smooth surfaces, where k � δ, the transition is caused by development of unstable oscillations.
For k ≈ δ, the transition Reynolds number depends significantly on the roughness height. For k � δ, such a
dependence is practically inexistent. For example, for subsonic flows with high roughness elements, the transition
Reynolds number is Re = 240± 20.
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TABLE 1

k, mm Re∗1 ·10−6, m−1 (k/η)∗ Re∗ X1, mm X2, mm

0 27.0 0 1070 0 350
0.075 12.5 1.4 730 45 133
0.115 10.0 2.0 700 45 133
0.2 9.5 3.3 637 220 320
0.3 8.0 4.5 585 220 320
0.44 6.0 5.6 500 220 320
0.54 4.5 6.1 440 220 320
0.83 3.5 8.1 380 220 320
1.12 4.0 12 410 220 320

Note. Transition parameters are marked by the asterisk; X1 and X2 are the coordinates of
the boundary-layer trip and hot-wire probe, respectively.

In our experiments, the height of the boundary-layer trips was chosen on the basis of Poll’s diagram [8]
constructed from experimental data for subsonic flow velocities. The experiments were performed for Re1 =
5 · 106–32 · 106 m−1. As an example, we consider the measurement results for a boundary-layer trip of height
k = 0.075 mm. In this case, the boundary-layer flow along the attachment line remained laminar up to Re1 =
107 m−1. For Re1 = 12.5 · 106 m−1, a hybrid (nonlinear) regime was observed, typical of the transitional region
in the boundary layer [26]. With further increase in Re1, the boundary-layer flow became turbulent. For this
roughness height, the transition curve obtained from root-mean-square fluctuations is plotted in Fig. 6. This
curve has a clear peak corresponding to the nonlinear transition region behind which the flow becomes turbulent.
The same conclusion can be drawn by analyzing disturbance spectra and oscillograms. Since these measurements
were performed with a fixed probe position relative to the model surface (Y = 0.1 mm), we performed additional
measurements, which showed that the result depends weakly on Y . Thus, the transition with a boundary-layer trip
of height k = 0.075 mm occurs at Re1 = 12.5 · 106 m−1.

Similar data were obtained for other wire diameters. The origin of a turbulent flow was accompanied by a
substantial increase in boundary-layer thickness. Thus, for k = 0.115 mm, the critical regime corresponded to a
unit Reynolds number Re1 = 9.5 · 106 m−1. For Re1 = 9.3 · 106 m−1 and Z = 115 mm, the mean and fluctuating
profiles of the boundary layer were measured. A significant (up to δ ≈ 1 mm) increase in boundary-layer thickness
was obtained.

The data for transition on the attachment line behind roughness elements, which were measured in the
present work, are listed in Table 1 and compared with the data of [6, 27] in Fig. 7. In contrast to [27], we managed
to obtain transition curves in the present experiments, which was achieved by continuous variation of the unit
Reynolds number [for a given height of the boundary-layer trip, the dependence Re(k/η) is linear].
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Fig. 7. Transition diagram on a swept cylinder for k = 0.075 (1), 0.115 (2), 0.2 (3),
0.3 (4), 0.44 (5), 0.54 (6), 0.83 (7), and 1.12 mm (8); curve 9 refers to data of the
present work for M = 2 and curve 10 refers to data of [6], and points 11 and 12 refer
to data of [27] for a laminar and turbulent flows, respectively.

Conclusions. Stability of the boundary layer on the attachment line is theoretically analyzed within the
framework of the asymptotic method of multiple scales. The asymptotic solution is shown to be in good agreement
with the exact solution for two-dimensional disturbances corresponding to the HMP mode with allowance for flow
compressibility. It is found that oblique waves are most unstable in a supersonic flow.

The laminar–turbulent transition in the boundary layer on the attachment line on a swept cylinder mounted
at an angle of 68◦ behind two-dimensional roughness elements in the form of wires 0.075–1.120 mm in diameter and
without them for M = 2 is experimentally studied. The critical Reynolds numbers of boundary-layer transition are
determined. The results of the present work are in agreement with the data obtained in NASA (Ames) for M = 1.6
and a sweep angle of 76◦ and supplement the latter.

It is shown that the transition Reynolds numbers on the attachment line of the swept cylinder in the
supersonic flow are higher than those in the subsonic flow, in all flow regimes. The difference observed seems to be
related to the high level of turbulence in Poll’s experiments and the low noise of the supersonic flow in [27] and in
the present work.

This work was supported by the International Science and Technology Center (Grant No. 128-96).
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